Plant blindness

 

You may or may not of heard of the term ‘plant blindness’; it’s a phrase that we in the Botanic Garden have been hearing much more of in recent years and will continue to throw around in the future. It refers to the slow shutting off of plant knowledge from generation to generation resulting in an inability to acknowledge plants around us. The simple things that were once common knowledge, such as dock leaves used for nettle stings are becoming bred out of a collective instinct and plants are becoming irrelevant and annoying green things to many people.

(more…)

The Svalbard Global Seed Vault: a safe haven for seed

By Helen Roberts

Svalbard is a group of Norwegian islands located in the high Arctic and only 1,300 km from the North Pole. It is breathtakingly beautiful. The landscape is stark, unforgiving and wholly memorable. I visited these islands more than 16 years ago as part of a 6-week science expedition – I was part of a botanical group looking at the exceptionally low-growing Arctic Willow. 
Memories of that place are still strong today. Its beauty and sense of isolation is unique. The humdrum of everyday life is simply stripped away here. You are left with the landscape, weather and incredible flora and fauna. Although life became simple, the vastness of the place was exhilarating and I felt totally and utterly free. 
The stark landscape of Svalbard
Photo credit: Paul Williams [via Flickr CC BY-NC 2.0]

The Arctic is an ideal refuge for seeds

Within this unforgiving landscape, nestled deep within a mountainside, is a seed bank of global importance. It holds 12,000 years of agricultural history and contains the world’s largest collection of crop diversity. 
The Global Seed Vault is the brainchild of renowned scientist Cary Fowler, a former executive director of the Global Crop Diversity Trust. It started as a simple idea back in the 1980s in the spirit of global collaboration, and finally came to fruition in 2008 when the building was completed. However, building the collection within is ongoing.
Svalbard Global Seed Vault
Photo credit: Amber Case [via Flickr CC BY-NC 2.0]
The facility currently holds about 850,000 different varieties of seed and acts as the back up for seed banks across the globe. This is a collection that is vastly important for food security and the safeguarding of crop diversity. Those 850,000 packets of seed represent more than 5,000 species and nearly half of the world’s most important food crops, from cereal and rice to unique varieties of legumes. The seed deposits come from over 60 different institutions and represent nearly every country in the world. 
The chosen location of the global seed vault is an interesting story. It needed to be located somewhere safe from both potential natural disasters and human conflict. Svalbard itself is a safe place to store seed both in terms of physical and social factors. Svalbard’s remoteness ensures an extra layer of security, while its geological stability and location, 130m above sea level, means the vault would be safe even in the worst-case scenario of sea-level rise. The storage facility is buried 150m deep into the side of a mountain where there is no radiation and where humidity levels remain low. The mountain also acts as a natural freezer, reducing the facility’s reliance on mechanical refrigeration. The local infrastructure on Svalbard is also very good despite its remoteness – Svalbard is serviced by regular scheduled flights.
Svalbard itself is also politically very stable and military activity is prohibited in the region under the terms of the Treaty of Svalbard of 1920. The local government is highly competent and Norway has long been recognised as a key country in the international efforts to conserve Plant Genetic Resources for Food and Agriculture (PGRFA). 

Building and running the vault

The Global Seed Vault is built to store up to 4.5 million different varieties of seed. Constructed to be highly functional, the rectangular edifice emerging from the side of the mountain is stark but architecturally beautiful. The structure is energy efficient; insulated by the mountainside, it maintains an ambient temperature of -7°C and therefore only needs a further temperature drop to -18°C to reach the recognised standard temperature for the storage of viable seed. 
The vault was built and paid for by the Norwegian government to provide a service to the world community. The structure took 12 months to build and cost NOK 50 million (approximately £4.6 million). The facility runs as a partnership between the Government of Norway, the Nordic Genetic Resource Centre (NordGen) and the Global Crop Diversity Trust. Operations regarding the vault are administered and controlled by an international advisory council of experts representing the Food and Agriculture Organization of the United Nations (FAO), national gene banks, the Consultative Group on Agricultural Research (CGIAR) and the Governing Body of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA). 

Inside the building

Some people are lucky enough to visit the seed vault on the rare occasions that you can gain access inside. I had to see the interior of the facility via a virtual tour. 
The front entrance is understated, although to gain access you have to go through half a dozen locked doors, each requiring a different key. Although, security appears minimal, it’s not. The facility is under constant surveillance by Staatsbygg, the government of Norway’s property manager and developer;  security cameras and sensors are located throughout the building. There is some natural security, of course, as the roaming polar bears outside outnumber the human population of Svalbard. 
From the entrance lobby, a 150m long tunnel extends into the mountain before reaching the three main storage chambers. At the moment, only one storage chamber is in use, in time the others will be filled as more seed varieties are deposited. 
Seed is only deposited three times a year and this is the only time when the vault is opened. 

Making a deposit


The metal shelves inside the Global Seed Vault.
Photo credit: Dag Terje Filip Endresen
[via Flickr CC BY-NC 2.0]
On arrival to Svalbard, seed lots are x-rayed and taken to the vault by NordGen staff members. The seed boxes containing the seed, which have been carefully placed in 3-ply aluminium packages, are then wheeled by trolley to the main storage chamber within the vault. Each package will contain on average 500 seeds. 
The seed lots are placed on simple metal shelving and are assigned bar codes to allow easy retrieval. They are catalogued using an information system called the Seed Portal of The Svalbard Seed Vault. This allows depositors to submit seed inventories and the general public to look at basic information about the seed that is stored within. Storage is free to depositors and they control access to the deposits. It is an International Black Box system, which ensures that only the depositor can access the raw seed and open the boxes. 

The most recent seed deposits

Last year, the first tree seeds were deposited from Norway and Finland. In February, pine and spruce seed was taken to the vault for storage from the Norwegian Forest Seed Center and the Finnish gene reserves forests of Lappträsk and Puolango, and Filpula and Lovisa. This deposit provides a back-up in the event that global climate change, forest management techniques and other factors, such as pests and disease begin to compromise the genetic diversity of these forests. It is a method of conserving the existing genetic resources and enabling long-term monitoring of the genetic variation within these forests, including any changes that occur because of tree breeding. This long-term tree seed project involves the countries of Finland, Denmark, Sweden, Iceland and Norway. 
The last deposit of seed was on 26th May 2016, with deposits from Germany, Thailand, New Zealand and the World Vegetable Center in Taiwan. Germany placed over 6,000 accessions into the vault of a number of different crop varieties, New Zealand deposited a number of varieties of sheep food including rye grass and white clover, Thailand deposited some 20 samples of very special chilli peppers and the World Vegetable Center deposited 1,200 seed lots from a number of different nations. 

Our agricultural future

The importance of this seed vault is apparent; it ensures the survival of the world’s most important crop species. Some seed varieties within the depths of this safe haven can survive for up to 4,000 years. In terms of food security, that is long term planning for human agriculture. 

Helen Roberts is a trained landscape architect with a background in plant sciences. She is a probationary member of the Garden Media Guild and a regular contributor to the University of Bristol Botanic Garden blog.


References:

Doomsday Vault Opened for Syrian Seeds: 
What is NordGen?:
Croptrust: 
Forest seed destined for Svalbard:
Forest tree seeds arrive at Svalbard’s ‘Doomsday vault’:
Arctic seed vault ‘key to future global crops’:
Storing the World’s Seeds in a Frozen Mountainside:
From sheep food to chili peppers – seed deposit at Arctic Vault takes the world one step closer to future food security: 
In the vault: David Osit:
Svaalbard Global Seed Vault:

Know your knotweed advice

By Nicola Temple

Researchers at the University of Exeter‘s Penryn campus have had a comprehensive look at Japanese knotweed (Fallopia japonica)  guidance from a range of sources on the web, including government sites, environmental NGOs, weed control companies, the media and the property market. They’ve found that this advice is often contradictory and even misleading.

A Japanese knotweed contaminated area in Hertfordshire
is identified with signage.
Photo credit: Peter O’Connor via Flickr [CC By-SA 2.0]
Japanese knotweed was introduced to the UK as an ornamental in the mid-1800s. It quickly became a problem plant, spreading swiftly and widely across the UK. This brutish invasive can penetrate building foundations and drains and is estimated to cost the UK economy £165 million a year.
The plant can grow from very small fragments of rhizome that weigh as little 0.01 g [1]. The rhizome material is capable of surviving for three months in a salty environment, which allows it to spread in coastal regions. Disturbing the rhizomes underground only promote growth and cutting the material above ground stimulates new above ground stems. It is the very definition of nuisance.

Japanese knotweed and the law

Two pieces of legislation were enacted to  provide the legal teeth needed to help control Japanese knotweed [2]. Under the Wildlife and Countryside Act 1981 (Section 14), it is illegal to plant or otherwise cause Japanese knotweed to grow in the wild. Offences can carry a maximum £5,000 fine or six months in prison, or both, in magistrates court. A Crown Court can impose an unlimited fine or maximum prison sentence of 2 years, or both.
The second piece of legislation is under the Environmental Protection Act 1990 (Section 33), where it is classed as ‘controlled waste# and must therefore be disposed of according to the Environmental Protection Act (Duty of Care) Regulations 1991. If you keep, treat or dispose of knotweed in a manner that is likely to allow it to spread, a magistrates court can impose a maximum fine of £20,000 or prison sentence of 6 months, or both. A Crown Court can impose an unlimited fine or maximum prison sentence of 2 years, or both.
Allowing Japanese knotweed to spread to your neighbours can also be considered a private nuisance. Failure to control this plant on your land could therefore result in a prosecution or community protection notice.

Mixed messages

Japanese knotweed growing along a fence in East London.
Photo credit: Gordon Joly via Flickr [CC licence BY-SA 2.0]

The research, published today (4th July) in the journal Applied Ecology, included a content analysis, which objectively describes written, spoken and visual communication, and allows researchers to quantify different types of content. This is a method often used in social research, but rarely applied to ecological questions, such as invasive plants. The results showed that there is conflicting advice out there, particularly about the disposal of Japanese knotweed, which could result in people taking the wrong course of action that leads to the unlawful and environmentally harmful spread of the plant.
“It is important to provide clear advice about the waste disposal of Japanese knotweed,” explained Beth Robinson, a PhD researcher in Exeter’s Environment and Sustainability Institute and lead author of the study, “as it can regrow from small fragments of rhizome and incorrect disposal of waste material can result in further spread of this plant.”
Even government websites were found to have conflicting and unclear information. The researchers point to Devon and Cornwall councils as both having valuable and accurate information about knotweed management. However, most of us are likely to consult the website of our own local council with the assumption that the information they provide is accurate.
“We recommend that local and national authorities collaborate and work towards disseminating more consistent messages,” said Robinson.
A tendency by the media to sensationalise the risks associated with this invasive plant can lead to unnecessary anxiety and expenditure.  An extreme example of this was headlines in 2013 such as ‘Murder andsuicide by husband driven mad over knotweed‘. Stories such as this make it sound as though the plant might have a psychoactive effect – driving people mad by its sheer presence, when indeed there are serious underlying mental health issues.
The Exeter researchers stress that Japanese knotweed needs to be dealt with on a case by case basis. While some knotweed invasions do require professional assistance, small-scale occurrences in domestic gardens may be effectively controlled and disposed of responsibly by the homeowner.

Visit the Cornwall Council website for some reliable information about Japanese knotweed and its management. 


The paper in Applied Ecology is titled ‘Weeds on the web: conflicting management advice about an invasive non-native plant’ and is authored by Beth S. Robinson, Richard Inger, Sarah L. Crowley and Kevin J. Gaston.


Sources:

[1]   &nbs
p; Macfarlane, J.S. (2011) Development of Strategies for the Control and Eradication of Japanese Knotweed [MPhil Thesis, University of Exeter] <https://ore.exeter.ac.uk/repository/handle/10871/11862>

[2]     Cornwall County Council (2016) ‘Japanese Knotweed Legal Issues’ [website accessed 4/7/2016] <https://www.cornwall.gov.uk/environment-and-planning/trees-hedges-and-woodland/invasive-plants/japanese-knotweed/japanese-knotweed-legal-issues/>

Plants and war

By Helen Roberts

For centuries plants have been closely entangled in the complexities of wars and hostilities. Shortages of food during periods of conflict are one of the most pronounced impacts on humans. Conflict can impede our ability to grow and harvest crops as well as distribute food. Restricting the movement of food is a tactic that is used to control territories and ultimately bring down enemies. 
In the 1990s, in sub-Saharan Africa, many countries suffered famine as a result of conflict and this was primarily due to the different sides using food and hunger as political tools. As well as immediate famine in those areas of active war, there were indirect impacts as people were displaced by war and could not return home to plant their crops. Even more recent examples include the siege warfare occurring in many parts of Syria where the act of starvation is used to make opposing sides submit. The devastation and suffering as a result of food shortages to humans is untold during conflict, but the ultimate survival of certain plants can be threatened too.  

Saving seeds in Svalbard

Svalbard Global Seed Vault, Norway.
Photo credit: Amber Case [via Flickr CC licence]

Seed banks – facilities that specialise in collecting and storing seeds that society has deemed worthy of cultivation – are critical in preserving and potentially restoring the plants lost as a result of war. In 2015, researchers made the first ever withdrawal of 38,000 seed samples from such a bank in order to rebuild a seed collection to replace one lost to the conflict in Syria. 

In 2012, when war reached Aleppo, Syria, researchers from the International Center for Agriculture Research in the Dry Areas (ICARDA) shipped seeds representing 87% of their collection to the Svalbard Global Seed Vault in Norway (a subsequent blog will follow on this unique seed bank facility). The remaining seed was shipped out to other international seed banks. The ICARDA facility in Aleppo hosted seed from 150,000 specimens of significant agricultural importance from the Fertile Crescent – the birthplace of agriculture. Many of the plant varieties do not exist in the wild any more, including unique landraces and wild relatives of cereals, legumes and forages and are only represented in seed banks. 
Having fled Aleppo, ICARDA researchers, now in Terbol, Lebanon, have withdrawn some of this seed from Svalbard in order to recreate the collection lost in the war torn city of Aleppo. Seed was also sent to another ICARDA facility in Morocco. The seeds will be planted and allowed to germinate, grown up and seed collected and sent back to Svalbard to continue the loop of important seed conversation and diversity. At the facilities in Lebanon and Morocco, agricultural research will continue on the seed samples with germplasm being distributed worldwide to plant breeders. 

Russian scientists protect seeds with their lives

It is not the first time that scientists have battled for seed survival. Russian scientists during the Second World War were so desperate in their unerring determination to protect an internationally important seed bank from devastation that lives were lost. The man in charge of the collection was Nikolai Vavilov, a Soviet botanist and geneticist most famous for his work on the evolution of domesticated plants. As a child, he had witnessed first hand the horror of food shortages and this spurred him on to a follow a career in the plant sciences concentrating on plant breeding in order to help combat famine in Russia. He has long been considered the founder of modern seed banks. 
Unfortunately, Stalin who foolishly sought short-term solutions to Russia’s problem of famine, did not support his work. Vavilov fell from favour and whilst on a plant collecting expedition in the Carpathian Mountains was taken and incarcerated, slowly dying in prison of starvation in 1943. Vavilov’s vast seed bank survived the 872-day Siege of Leningrad. Dedicated scientists bent on protecting this valuable collection, barricaded themselves into the seed bank building and guarded it against looting. Sadly, they succumbed to either starvation or disease. This was an ironic tragedy considering they refused to eat any of the seed they were so intent on protecting. 

Plant-based resources in short supply

Not only does conflict cause basic food shortages and threaten plant species survival but it can affect the availability of important plant-based resources. Commodities such as rubber, coal, paper, timber, drugs, cotton and hemp, all derived from plants, have played a key part in conflicts. Of course, control of these critical resources has also propelled countries into war, including tea, spices, salt, grain, flour, bread, sugar and rice. 
One of the many ‘Dig for Victory’ posters
of the Second World War.

War also pushes the agricultural and manufacturing boundaries in the production of food and plant materials. One major commodity during the Second World War of vital importance was rubber. Natural rubber supplies from the plantations of Southeast Asia were severed at the start of the war and American forces were faced with the loss of a hugely important resource even though rubber had been stockpiled in the years preceding the war. With the fall of Singapore and the Dutch East Indies in 1942, rubber exports came to a complete standstill. The Americans invested heavily into developing synthetic rubber, but one of the twentieth century’s greatest ethnobotanists, Professor Richard Evans Schultes, was sent into the remote Amazon basin to hunt for wild rubber. For Schultes, this resulted in 12 years of exploratory research deep within the rainforest. 

People in Britain were growing their own to combat food shortage
s during the Second World War – spurred by iconic posters emblazoned with the words ‘Dig for Victory’. A staggering 1.4 million people dug up their gardens and lawns to grow vegetables and fruit in Britain. It was similarly successful in the US – by May 1943, 100 acres of land in the Portland area of Oregon was being cultivated by just children!

Plants used to commemorate lives lost

During and after conflict, many plants can hold particular meanings for people. The flowers of certain plants are commonly seen as peaceful elements imbuing a sense of calm and many plants are closely associated with the recognition and commemoration of those who have fallen in wars. The red poppy is one of the most emotive and unforgettable flowers because of war. A symbol of remembrance and hope, and worn by millions of people to remember those who have fallen in battle. The idea of using the poppies stemmed from one of the world’s truly poignant poems, ‘In Flanders Fields’ and is now inextricably entwined with the memory or war. It represents a powerful symbol of our relationship with a plant during and after conflict.

Helen Roberts is a trained landscape architect with a background in plant sciences. She is a probationary member of the Garden Media Guild and a regular contributor to the University of Bristol Botanic Garden blog.

Sources:

  1. Seed bank aims to protect world’s agricultural inheritance from Syria war. (2016). The Guardian. <http://www.theguardian.com/world/2016/feb/24/seed-bank-aims-to-protect-worlds-agricultural-inheritance-from-syria-war>
  2. ICARDA’s update on its seed retrival from Svalbard <http://www.icarda.org/update/icarda’s-seed-retrieval-mission-svalbard-seed-vault#sthash.5nrDjLb8.dpbs>
  3. Richard D. Bardgett. (2016). Earth Matters: How Soil Underlies Civilization.  Oxford: Oxford University Press.
  4. Wade Davis. (1996). One River: Science, Adventure and Hallucinogenics in the Amazon Basin. London: Simon & Schuster Ltd. 
  5. Kathy Willis & Carolyn Fry. (2014). Plants: From Roots to Riches. London: John Murray.