Walking among bees with Steven Falk

By Nicola Temple

Steven speaking to us in front of the limestone
meadow. Photo: Nicola Temple
I thoroughly love watching insects visit my garden (aphids and a few other pests excepted). However, I have to admit that beyond broad groupings, bumblebee, honey bee, hover fly, fly etc, I’m not very good at identifying them down to species. This clearly isn’t necessary to enjoy them, but I do find that when I know a species, when I know its routines and habits (as much as anyone does), then I have a deeper appreciation for them. So, when the University of Bristol Botanic Garden offered a bee identification workshop with Steven Falk, I signed myself up.
Steven Falkhas had an interest in insects since his childhood in London in the 1960s and 70s. Insects inspired his artwork and his skill as an artist earned him the honour of illustrating the book British Hoverflies, which he began working on when he was only 15. He has gone on to illustrate and write many publications since, including my newly acquired Field Guide to the Bees of Great Britain and Ireland (Bloomsbury, 2015).
Steven began the talk with some fast facts about insects in England. There are about 24,000 species of insect in England, 6,000 of which are regular visitors to flowers. “The biggest slice of this insect pie is wasps,” he explained. Even parasitic wasps visit flowers, and all together there are around 2,800 species.  Bees make up a mere 280 species and hover flies another 280. However, though they are less diverse in terms of species, bees and hoverflies are both abundant and extremely effective pollinators – so they punch above their diversity, so to speak.
Steven holding a yellow-legged mining-bee.
Photo: Nicola Temple
We start our walk in the Botanic Garden in the limestone meadow, just beside the West Terrace and the pond. If you unfocus your eyes a little and stare across the flowers, it is alive with activity. Steven shows us Myathropa florea, a reasonably sized hoverfly that has distinct grey markings on its thorax. It has an aqueous larvae, which lives in little rot holes at the base of trees. Then Steven points out a bumblebee mimic, Cheilosia illustrata, which tends to spend time near Hogweed because its larvae tunnel through the stems and roots. Apparently you can tell the age of a forest by the species of hoverfly present because they are so closely associated with certain plants.
Within minutes we’ve also spotted a common carder-bee (Bombus pascuorum) with its chestnut thorax – though Steven explains that this can be quite variable. It has a longer tongue and so this species is able to get down into the clover flowers. But there are also some buff-tailed bumblebees (Bombus terrestris) flying about also, which have shorter tongues and so they bite a hole at the base of the flower to rob the nectar. We spot lots of honey bees (Apis mellifera), which Steven also explains can be extremely variable in appearance, ranging from the typical striped appearance to almost entirely black – the tell tale sign being that its hind legs hang down as it flies. We haven’t even moved on the tour and we’ve already spotted at least six pollinator species – probably far more, I just can’t write fast enough to keep up with Steven listing them off!
The ‘fuzz’ of lamb’s ear is used by the female
wool-carder bee to line her nest.
Photo: Nicola Temple
Using what he calls his ‘praying mantis’ technique, Steven grabs a yellow-legged mining-bee (Andrena flavipes), and holds it so that we can all have a look at it. The long antennae tell you that this is not a fly, however, Steven goes on to list the colour variations that you can encounter. With all of these colour variations, I’m pretty sure I don’t stand a chance of accurately identifying anything on my own!
As we wander past some Lamb’s ear (Stachys byzantina), Steven mentions that the female wool-carder bee (Anthidium manicatum), a solitary bee, uses the fuzz from the plant’s leaves to line its nest. Steven then spots a patchwork leaf-cutter bee (Megachile centuncularis) and explains that it doesn’t collect pollen on its hind legs, but rather on its underbelly. Using his insect net, he catches it and place it temporarily in a little tube so that we all get a chance to look at it.
We walk past the wall germander (Teucrium chamaedrys) and there doesn’t appear to be a single flower that isn’t being visited by a bumblebee. It becomes obvious that while many of the tour participants are interested in the bees, they are equally interested in noting down which of the plants in the Botanic Garden are popular with pollinators so that they can create more bee-friendly gardens at home.

A great pied hoverfly (Volucella
pellucens
).
Photo: Nicola Temple
As one would expect, near the end of the tour Steven begins to discuss some of the challenges that our pollinators face these days. He discusses the use of pesticides and the loss of habitat. He mentions that more erratic weather patterns and mild winters can lead to mortality – the latter causing over-wintering bees to go mouldy. But, he also finds the silver lining, stating that some bee species are expanding their distribution due to climate change.
It was only the commitment to another tour that forced Steven to end our walk. His love and enthusiasm for insects was apparent and he could have no doubt gone on to discuss far more than he did.
I definitely had different expectations for the workshop. I’m not sure whether it was the term ‘workshop’ or my own background in biological sciences that set my expectations that we would be looking at example specimens and comparing their features so that we might be able to better identify them. This was more of a garden tour and pollinator walk, which was lovely, but I’m not entirely sure I feel better equipped to identify bees in my garden as a result of being on the tour. If anything, it has shown me how much variation there can be within species let along adding in mimics and related species into the mix!  In the end I bought the Field Guide because really, in the end, that’s what it takes…good ol’ practice! And if I’m unsure Steven said to send him a picture on Twitter and he’ll help me identify it, which is brilliant! Not to mention, he has a fantastic free site on Flickr with pictures and information about all the British species, which is an incredible resource.
Germander (Teucrium chamaedrys) attracts
a tremendous number of pollinators.
Photo: Nicola Temple
This is the Year of the Pollinator at the Botanic Garden, so there are any number of pollination themed activities happening this year, including a beekeeping taster day, short courses for encouraging pollinators to your garden, and of course the annual bee and pollination festival in September.  And if you happen to snap a great photo of a pollinator this summer, you can enter the Botanic Garden’s photography competition, which will earn you a signed copy of Steven’s Field Guide to the Bees of Great Britain and Ireland as well as tickets to the Bee and Pollination Festival, visit the website for more details on how to enter.

In the guts of bees

By Nicola Temple

We hear a great deal about the beneficial bacteria that live in our digestive system and commonly referred to as the microbiome, which help us turn indigestible materials into nutrients that we can absorb. There are countless probiotic products on the market that are meant to introduce more of these beneficial bacteria into our system, enriching our microbiome. However, humans and indeed mammals are not alone in having helpful microflora in the gut.

The microbes that inhabit the guts of social bees has been of particular interest recently. These microbial communities have been studied for their role in bee health, but also as a model organism to help understand the relationship between hosts and their gut microbes, potentially providing insight into our own system.

The specialised cast of microbes

The microbiome of bees is relatively simple, but very specialised. There are about eight to ten bacterial species, but different species of bee will carry different strains of these bacterial species. The bacteria are so specialised that a strain from one bee genus isn’t able to colonise the gut of a bee from a different genus. This suggests that these bacterial strains have been evolving with their hosts over a very long period of time.

Nest entrance of the stingless bee, Geniotrigona thoracica, is
from Malaysia. Photo credit: Eunice Soh.

Like us, these bacteria help the bees break down complex molecules through fermentation in order to make the nutrients available to the hosts. There’s also evidence that they might help to neutralise toxins in the gut. These friendly microbes also outcompete nastier pathogenic species that can make the host ill. For example, the gut microbes in bumblebees have been linked to lower levels of the parasite Crithidia bombi.

The gut microbes of non-social insects, including solitary bees, aren’t as specialised because they acquire them from their environment rather than from other members of their species. Among social bees, it is behaviours such as passing food between individuals and feeding larvae, that allow an exchange of microbes. However, these exchanges pass along the bad microbes as well as the good.  Beekeepers are painfully aware that pathogens can pass through a colony like wildfire. Social insects therefore need a very responsive system that helps keep these pathogens in check. And the key to this might be a very ancient relationship between the good microbes and the host bees themselves, which allows the bee’s immune system to quickly identify the less desirable critters.

A long-term relationship

Research published this week in the journal Science Advances suggests that five of the species of gut bacteria found in modern social bees have been evolving along with their hosts for about 80 million years. It was around this time that the first solitary bees began socialising with other bees – sharing nests and food resources and making concerted defence efforts. The descendants of these first social bees are the hundreds of species of honey bees, bumblebees and stingless bees that are alive today.
This finding not only shows that social creatures, such as bees and humans, transfer bacteria among each other during the same lifetime, they pass them along generations, enabling the microbiome and host to evolve together.

“The fact that these bacteria have been with the bees for so long says that they are a key part of the biology of social bees,” says Nancy Moran, a professor of integrative biology at the University of Texas who co-led the research with postdoctoral researcher Waldan Kwong. “And it suggests that disrupting the microbiome, through antibiotics or other kinds of stress, could cause health problems.”
The co-evolution of the gut bacteria and the bees is so closely linked, in fact, that the researchers found that when a new species of bee branches off in the evolutionary tree, a new strain of bacteria branches off with it. The result being that each of the hundreds of species of social bees alive today has its own specialised strains of gut microbes.

Human influence on this long-term relationship

It’s currently unknown how toxins introduced by humans, including pesticides, might affect the bee microbiome. There is recent evidence, however, that the prophylactic use of antibiotics by bee keepers in the US has resulted in some gut bacteria in honeybees developing antibiotic resistance.

References

Engel, P. et al. 2016. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. mBio 7 (2): e02164-15.

Kwong, W.K., Medina, L.A., Koch, H., Sing, K-W., Soh, E.J.Y., Ascher, J.S., Jaffe, R. & Moran, N.A. 2017. Dynamic microbiome evolution in social bees. Science Advances 3: e1600513.

Kwong, W.K., Engel, P., Koch, H. & Moran, N.A. 2014. Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS 111 (31): 11509-14.

Look out for the early bumblebee…they’re emerging now!

By Alida Robey

I am always so impressed and uplifted when I see the first bees out, braving the cold and wind to forage in the spring sunshine. The buff-tailed bumblebee (Bombus terrestris) braves the winter, emerging on fine winter days to forage, but another species that you are likely to see right now is the ‘early bumblebee’ or Bombus pratorum.

The early bumblebee (Bombus pratorum).
Photo credit: S. Rae [via Flickr CC by 2.0]

How to tell one stripy buzzing creature from another

Being larger and hairier than honey bees, bumblebees in general have a bit more protection to cope with colder weather conditions, giving them an advantage when it comes to foraging in the early spring. The early bumblebee is common throughout Britain from March until June or July, and in milder parts of the south of England, as early as February.

The Bumblebee Conservation Trust has a very good identification chart and video guide to help distinguish different bumblebee species. When trying to distinguish between species of bee, size, tail colour and stripes are the features to look at. Bombus pratorum is noticeably smaller in size than other bee foragers at work in the spring. Queens, workers and males have a yellow band on the thorax and abdomen, though the band across the abdomen is less obvious or sometimes absent in workers.

The tail is a strikingly dark orange-red, but can be tricky to see as this colouring is only in the final tail section and may also fade with time. Males have a broad yellow collar that wraps around the thorax, and yellow hair on the face.

The bee’s choice of diet

The early bumblebee is a  good pollinator of flowers and fruit, enjoying in particular white clover, thistles, sage, lavender, Asteraceae, cotoneaster, alliums and a range of daisy type flowers; it is also an important pollinator of soft fruit, such as raspberries and blackberries.

Habitat and lifecycle 

B. pratorum’s nesting period is shorter than other bumblebees at just 14 weeks. Queens are fertilised in late summer and then usually go into hibernation. They will emerge from hibernation between March and May depending on the climate in that location and find a place to make their nest. However, because of their short nesting period, they can have two or even three colonies a year in the warmer, southern regions of the UK; new queens mate and, instead of hibernating, immediately start a nest.

At the start of a colony cycle, the queen has a large store of food, which allows her to start laying her eggs to produce workers and foragers who will then gather all the supplies she needs in order to remain in the nest and continue to lay eggs. As the colony cycle nears its end, she will produce more queens before dying herself, allowing the young queens to take up the cycle for the next spring. These young queens will go out to forage for themselves and return to the nest for shelter, but they don’t contribute to the dying colony. When they are ready to mate, the young queens follow the scent of chemical attractants deposited by males. The old colony dies off, with B. pratorum rarely seen after July in the UK,  and so the cycle continues for another season.

The early bumblebee is known for nesting in unusual places such as abandoned bird boxes or rodent nests or just under the ground. Colonies are small at less than 100 workers.

Cuckoos

The bumblebee is no more immune than other creatures to being taken advantage of. Of the 24 bumblebee species in the UK, 6 are ‘cuckoo bees’, which don’t make their own nests, but rather kill off the queen in another nest and get the worker bees to raise her larvae. It is the species Bombus sylvestris, which is a nest parasite of the early bumblebee.

Buzz Pollination

I was intrigued to hear this term, describing a process unique to bees, whereby they catch hold of a flower and by emitting a high pitched buzz shake free the pollen trapped inside (watch a video here). I had also often wondered if bees had any way of knowing whether others had raided the pollen stores before them. It turns out that they have smelly feet that leave a distinctive odour on flowers, which indicates to other bees that the supplies have been raided.

What can we do to help?

As you will know, our pollinators are in decline not just in the UK, but globally.  I was saddened to learn that two species of bumblebee have become extinct in the UK since 1900 – Cullums bumblebee (Bombus cullumanus) and the short-haired bumblebee (Bombus subterraneus). Having lost 97% of wildflower-rich grasslands, we can take action to plant the flowers that are rich in pollen and nectar and therefore of most benefit to bees – some flowers, like pansies, and most double flowers may look pretty, but are of little benefit to bees.

Then there is the whole issue of pesticides. Neonicotinoids, used in some pesticides, are lethally toxic and infiltrate every aspect of the plants systemically – one teaspoon of neonicotinoids is enough to give a lethal dose to one and a quarter billion bees. Professor Dave Goulson, Professor of Biology at the University of Sussex and a bee expert, has been on a mission to see how widespread the use of these pesticides are as plants with a ‘Bee-friendly’ label may have been treated with these pesticides before being put on the shelves of the plant nursery.

Splitting and sharing plants and growing from seed can help ensure the plant hasn’t been exposed to these pesticides – it’s another thing we can do as gardeners to help these valiant and much-assailed vital workers in the garden. Also, as a Friend of the University of Bristol Botanic Garden, you have a unique opportunity to grow special plants from seed collected at the garden!

Another fun way you can help is to take part in The Great British Bee Count using an app developed by Friends of the Earth and which will be running again this year from 19 May – 30 June 2017. This is an initiative to help monitor the numbers of the different bee species found
in the UK.  You can see the results of last year’s survey and access various educational resources on their website.

Alida Robey has a small gardening business in Bristol. For several years in New Zealand she worked with others to support projects to establish composting on both domestic and a ‘city-to-farm’ basis.

Bumblebees who brave the winter

By Nicola Temple

This past weekend, my family and I met with friends in the village of Shipham, in Somerset, for a walk. It was torrential rain, yet we were determined. We dressed ourselves and three children under the age of 10 in waterproofs and set out. We arrived at a local country pub, not more than 3 km away, resembling drowned rats. And as a Canadian living here in the UK, I still marvel at the fact that nobody took one bit of notice at the state of us. It’s what you do. You get wet. You find a pub. You hunker down for a hot Sunday lunch. And you hope it tapers off before you have to head out again. (It didn’t.)

Pollinators, at least of the flying insect variety, aren’t terribly keen on this kind of weather either. Most hunker down for the winter months as there is generally not a lot of nectar to forage this time of year anyway. How they do this depends on the species. Honeybees reduce the colony to a minimal size and rely on their honey stores to see them through, while they dance in order to regulate the temperature of the hive. Most bumblebee colonies die out completely and the queens that mated at the end of the season find a place to hibernate. Solitary bees may hibernate as adults or as larvae, emerging only when the weather conditions are suitable. To each their own.

Martin Cooper spotted this buff-tailed bumblebee queen
foraging on his Mahonia flowers in Ipswich on a sunny
January day in 2015.
Photo credit: Martin Cooper [via Flickr CC]

However, there is one flying pollinator that can be spotted this time of year here in Bristol, and indeed, other warmer regions of the UK. It is the common buff-tailed bumblebee (Bombus terrestris). This species was first spotted during the winter of 1990, in Exeter. Sightings have been increasing ever since and include nest-founding queens, workers and males, suggesting this is a winter generation of the species.

The mated queen will emerge from her subterranean dormant state (diapause) during warm winter weather and set about establishing a new colony. The potential cost of waking up early is that the warm weather could be short-lived and temperatures could plummet. The benefit, of course, is that there’s nobody to compete with for food. If successful, the queen can establish a colony before the other pollinators even wake up from their winter nap.

Introduced plants provide winter forage

Of course, there is potentially another cost to emerging early – there could be nothing to eat. Bees are able to forage at temperatures around 0oC, but if there aren’t enough plants in flower, they won’t find the pollen and nectar needed to sustain the colony. Few native UK species flower in winter, but species introduced by avid gardeners to bring some winter colour to the garden, also bring some much-needed food to the buff-tailed bumblebee.

Researchers at Queen Mary University of London and The London Natural History Society, conducted a study of buff-tailed bumblebees foraging in London parks and gardens during winter about ten years ago. They wanted to see just how much food the bees were finding as food is directly related to the success of the colony.

The researchers found that there was plenty of forage to sustain the colonies and, in fact, the foraging rates they recorded near the end of winter were equivalent to peak foraging rates found in the height of summer. This doesn’t mean that the winter-flowering plants, such as the evergreen shrubs of the Mahonia spp., are providing more pollen and nectar than all the plants in the height of summer. But it does mean that each flower might have more pollen and nectar available because there aren’t other pollinators out and about also using the resource. The bumblebees, therefore, don’t need to go as far to find an equivalent amount of food and so they can collect it at a faster rate.  

Strategies for tolerating cold

Buff-tailed bumblebees aren’t as tolerant to cold as some other bee species; workers will freeze solid at about -7.1oC while queens freeze at -7.4oC. The bumblebees can obviously find warmth in the colony, but they need to forage and therefore be able to tolerate short spells of cold during the winter months. They may even need to tolerate cold temperatures for up to 24 hours as bumblebees often overnight away from the colony when they are unable to return from foraging.

Researchers from the University of Birmingham looked at the different cold tolerances of this bumblebee species a few years ago. They found that 50% of workers died after being exposed to 0oC for 7.2 days while queens could last over 25 days at this temperature – likely due to their fat reserves. However, as the forage study showed, the bees seem capable of finding food sources closer to the colony during winter months, which may reduce the likelihood of them having to endure cold temperatures for a lethal period of time.

These bumblebees may also have adopted some strategies to help reduce their possibilities of freezing. Pollen is an ice-nucleating agent in that it promotes the development of ice at higher temperatures. Other insects have been observed to expel any ice-nucleating agents from their gut when they experience low temperatures to avoid freezing. While this wasn’t observed in the bumblebees, it is a strategy that individuals might employ when caught out in the cold.

The more frequent observation of buff-tailed bumblebees in winter is thought to be a result of warmer autumn temperatures brought about by climate change. In a study from 1969, researchers reported a 6-9 month dormancy of all bumblebees in southern UK, so in a relatively short period of time there has been a considerable change in their seasonal pattern. There seems to be some flexibility in these patterns among bumblebees and for now, establishing winter colonies seems to be working for the buff-tails. However, with so many of our pollinators under threat, there is obviously also concern among the scientific community that more frequent extreme weather events could also spell disaster for these colonies that have selected to brave the winter months. As gardeners, we can perhaps do our bit by planting some winter forage species.

This year, the University of Bristol Botanic Garden will embrace a pollinator theme, with the aim of highlighting some of the lesser-known pollinators that are so important here in the UK. We love our pollinators, but research is still revealing so much about their unique and complex relationships with plants. So watch this space as we share some of these wonderful stories through our blog. We will also be posting pictures of pollinators we see in the Botanic Garden on our Twitter feed and Facebook page. But to see these polli
nators in action, take some time to visit the Botanic Garden. Make space in your busy schedule to watch nature at its best – it’s worth it.

Sources:

Alford DV (1969) A study of the hibernation of bumblebees (Hymenoptera: Bombidae) in Southern England. Journal of 
     Animal Ecology 38: 149-170.
Owen EL, Bale JS, Hayward SAL (2013) Can winter-active bumblebees survive the cold? Assessing the cold tolerance of 
     Bombus terrestris audax and the effects of pollen feeding. PLoS ONE 8(11): e80061.          
     doi:10.1371/journal.pone.0080061
Stelzer RJ, Chitka L, Carlton M, Ings TC (2010) Winter active bumblebees (Bombus terrestris) achieve high foraging 
     rates in urban Britain. PLoS ONE 5(3): e9559. doi: 10.1371/journal.pone.0009559